
On the use of Differential Calculus

in the resolution of Equations *

Leonhard Euler

§227 That an equation can be reduced to the nature of functions was de-
monstrated above already. For, let y denote any function of x; if one puts
y = 0, this form contains completely all finite equations, may they be algebraic
or transcendental. But the equation y = 0 is said to be solved, if that value x
is found which substituted in the function y actually renders it equal to zero.
But in most cases many of such values x exist, which are called the roots of
the equation y = 0. Therefore, if we put that the numbers f , g, h, i etc. are
roots of the equation y = 0, the function y will be of such a nature that, if in it
either f or g or h or etc. is substituted for x, it indeed is y = 0.

§228 Therefore, since the function f vanishes, if in it one puts f or x+( f − x)
instead of x, where f is a root of the equation y = 0, by the results we
demonstrated on functions above [§48] it will be

0 = y +
( f − x)dy

dx
+

( f − x)2ddy
2dx2 +

( f − x)3d3y
6dx3 + etc.,

from which equation the value of the root f is determined in such a way that,
whatever was put for x and hence the value of the quantities y, dy

dx , ddy
2dx2 etc.

were substituted, always the equation expressing the true value of f results.
That this is seen more clearly, let us put that it is
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as part of the book „Institutiones calculi differentialis cum eius usu in analysi finitorum ac
doctrina serierum, 1755“, reprinted in in „Opera Omnia: Series 1, Volume 10, pp. 422 - 445 “,
Eneström-Number E212, translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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y = x3 − 2x2 + 3x− 4;

it will be

dy
dx

= 3xx− 4x + 3,
ddy
2dx2 = 3x− 2 and

d3y
6dx3 = 1.

Having substituted these values this equation results

0 = x3 − 2x2 + 3x− 4 + ( f − x)(3xx− 4x + 3) + ( f − x)2(3x− 2) + ( f − x)3

or having actually done the multiplications

f 3 − 2 f f + 3 f − 4 = 0;

of course, the same equation as the propounded one results which therefore
contains the same roots.

§229 But although this way one does not get to a new equation, from which
the value of the root f can be determined in an easier way, nevertheless
extraordinary auxiliary theorems for the invention of roots can be deduced
from this. For, if a value already very close to a certain root was assumed for
x such that f − x is a very small quantity, then the terms of the equation

0 = y +
( f − x)dy

dx
+

( f − x)2ddy
2dx2 +

( f − x)3d3y
6dx3 + etc.

will converge very rapidly and therefore this expression will not deviate much
from the true value, if only the first two initial terms are considered. Therefore,
if a value already close to a certain root of the equation y = 0 was assumed
for x, it will approximately be

0 = y +
( f − x)dy

dx
or f = x− ydx

dy
,

from which formula a, even though not true, but nevertheless very good
approximate value of the root f will be found, which, if it is substituted for x
again, will yield a even better value for f and so one will continuously get
closer to the true value of the root f .
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§230 Therefore, at first the root of all powers of any number can be calculated
this way. For, let the number an + b be propounded and let its root of the power
n to be extracted. Put xn = an + b or xn − an − b = 0 that it is y = xn − an − b;
it will be

dy
dx

= nxn−1,
ddy
2dx2 =

n(n− 1)
1 · 2 xn−2,

d3y
6dx3 =

n(n− 1)(n− 2)
1 · 2 · 3 xn−3 etc.

Therefore, if the root in question is put = f that it is f = n
√

an + b, it will be

0 = xn − an − b + n( f − x)xn−1 +
n(n− 1)

1 · 2 ( f − x)2xn−2 + etc.

Therefore, if one takes a number already coming close to the value of the root
f in question for x, which will be achieved by putting x = a, if b was such a
small number that an + b < (a+ 1)n, it will approximately be b = nan−1( f − a)
and hence

f = a +
b

nan−1 ,

whence a much better approximation of the value of the root will be found.
But if we want to take also the third term that it is

b = nan−1( f − a) +
n(n− 1)

1 · 2 an−2( f − a)2,

it will be

( f − a)2 = − 2a
n− 1

( f − a) +
2b

n(n− 1)an−2

and hence

f = a− a
n− 1

±

√
aa

(n− 1)2 +
2b

n(n− 1)an−2

or

f =
(n− 2)a +

√
aa + 2(n− 1)b : nan−2

n− 1
.

Therefore, by means of the extraction of the square root an even closer value
of the root f will be found.
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EXAMPLE

Let us find the square root of any number c or let xx− c = y.

Therefore, put the number very close to the root = a and b = c− aa; because
of aa + b = c and since it is n = 2, the first formula will become f =
a + c−aa

2a = c+aa
2a ; the other gives f =

√
c which is the root in question itself.

Therefore, because the root approximately is = c+aa
2a , write that value for a

and f = cc+6aac+a4

4a(c+aa) will be an even better approximation. For the sake of an

example let c = 5, from the first formula it will be f = 5
2a +

a
2 . Therefore, put

a = 2, it will be f = 2.25; now put a = 2.25, it will be f = 2.236111; further,
set a = 2.236111, it will be f = 2.2360679 which value already hardly deviates
from the value.

§231 But in like manner the root of any equation can be found approximately
by means of the equation f = x− ydx

dy , after having assumed a value differing
hardly from a certain root of the equation for x, of course. To find a value of
this kind for x, successively substitute various values for x and from them
chose the one which minimizes the function y, which means, which indicates
the value closest to zero. So, if it is

y = x3 − 2xx + 3x− 4

having put x = 0 it is y = −4

x = 1 y = −2

x = 2 y = +2,

whence we see that the root is contained within the values 1 and 2 of x.
Therefore, because it is dy

dx = 3xx− 4x + 3, in order to find the root f of the
equation x3 − 2xx + 3x− 4 = 0 one has to use this equation

f = x− ydx
dy

= x− x3 − 2xx + 3x− 4
3xx− 4x + 3

.

Therefore, let x = 1; it will be f = 1 + 2
2 = 2. Now put x = 2; it will be

f = 2− 2
7 = 12

7 . Therefore, let x = 12
7 ; it will be f = 12

7 −
104
1701 = 2812

1701 = 1.653.
If we want to proceed further, we will use logarithms more conveniently.
Therefore, put x = 1.653 and it will be
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log x1 = 0.2182729 x1 = 1.653000

log x2 = 0.4365458 x2 = 2.732409

log x3 = 0.6548187 x3 = 4.516673

x3 = 4.516673

3x = 4.959000

And hence

x3 + 3x = 9.475673 3xx + 3 = 11.197227

2xx + 4 = 9.464818 4x = 6.612000

num. = 0.010855 den. = 4.585227

log num. = 8.0356298

log den. = 0.6613608 x = 1.6553000

log fract. = 7.3742690 fraction = 0.002367

f = 1.650633,

which value already comes very close to the true one.

§232 But we will be able to deduce faster approximations from the general
expression. For, because having put any function y = 0, if the root of this
equation was x = f , we will find that it is

0 = y +
( f − x)dy

dx
+

( f − x)2ddy
2dx2 +

( f − x)3d3y
6dx3 + etc.,

let f − x = z, such that the root is f = x + z, and put

dy
dx

= p,
dp
dx

= q,
dq
dx

= r,
dr
dx

= s etc.;

it will be

0 = y + zp +
z2q
2

+
z3r
6

+
z4s
24

+
z5t
120

+ etc.;
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in this equation having taken any value for x, from which at the same time
y, p, q, r, s etc. are determined, the quantity z must be found, having found
which one will have the root f = x + z of the propounded equation y = 0.
Therefore, will have to focus on the task to find the value of the unknown z
from this equation in the most convenient way possible.

§233 Assume this convergent series for z

z = A + B + C + D + E + etc.

and after the substitution it will be

y = y

pz = Ap + Bp + Cp + Dp + Ep + etc.

1
2

qz2 = +
1
2

A2q + ABq + ACq + ADq + etc.

+
1
2

BBq + BCq + etc.

1
6

rz3 =
1
6

A3r +
1
2

A2Br +
1
2

A2Cr + etc.

+
1
2

AB2r + etc.

1
24

sz4 =
1
24

A4s +
1
6

A3Bs + etc.

1
120

tz5 =
1

120
A5t + etc.

Therefore, one will obtain the following equations
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A = − y
p

B = −yyq
2p3

C = −y3qq
2p5 +

y3r
6p4

D = −5y4q3

8p7 +
5y4qr
12p6 −

y4s
24p5

etc.

and hence it will be

z = − y
p
− y2q

2p3 −
y3qq
2p5 +

y3r
6p4 −

5y4q3

8p7 +
5y4qr
12p6 −

y4s
24p5 − etc.

EXAMPLE

Let this equation be propounded x5 + 2x− 2 = 0.

Therefore, it will be

y = x5 + 2x− 2,
dy
dx

= p = 5x4 + 2,
dp
dx

= q = 20x3,

dq
dx

= r = 60x3,
dr
dx

= s = 120x etc.

But now put x = 1, since this value hardly deviates from the true root, it will
be

y = 1, p = 7, q = 20, r = 60, s = 120,

whence it will be

z = −1
7
− 10

73 −
200
75 +

10
74 −

5 · 1000
77 +

500
76 −

5
75 + etc.

or

z = −1
7
− 10

73 −
130
75 −

1745
77 − etc.,

and therefore it will be z = 0.18 and the root f = 0.82; if this value is again
substituted for x, a root very close to the true one will result.
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§234 Therefore, we found an infinite series, which expresses the root of any
equation; but it is inconvenient that the law of progression is not obvious,
and it hence is too complex and not sufficiently useful. Therefore, let us
consider the same problem in another way and try to find a more regular
series expressing any root of the propounded equation.

Let as before the equation y = 0 be propounded while y is any function of x
and the question reduces to that the value of x is defined which substituted
for x renders the function y equal to zero. But because y is a function of x,
vice versa x can be considered as function of y and considering it like this
the value of the function x is to be found which it obtains, if the quantity y
vanishes. Therefore, if it is propounded to find the value of x which will be
the root of the equation y = 0, since x goes over into f , if one sets y = 0, by
the results demonstrated above [§ 67] it will be

f = x− ydx
dy

+
y2ddx
2dy2 −

y3d3

6dy3 +
y4d4x
24dy4 − etc.,

in which equation the differential dy is assumed to be constant. Therefore, if
one puts

dx
dy

= p,
dp
dy

= q,
dq
dy

= r,
dr
dy

= s etc.,

having introduced these values, so that it is not necessary to consider a certain
differential to be constant, it will be

f = x− py +
1
2

qy2 − 1
6

ry3 +
1

24
sy4 − 1

120
ty5 + etc.

§235 Therefore, having attributed any value to x at the same time the values
of y and the quantities p, q, r, s etc. will be determined and having found
these values one will have an infinite series expressing the value of the root f .
But if the equation y = 0 has several roots, then these values result, if different
values are assumed for x; for, because y can have the same value, even though
different values are attributed to x, it is not surprising that the same series can
often yield several values. To avoid this ambiguity in these cases and to render
the series convergent, a value already close to the value of its root, which is
in question, must be assumed for x. For, this way the value of y will become
very small and the terms of the series will decrease immensely, such that by
taking only a few terms one will already find a sufficiently correct value for f .
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If this value is then substituted for x, the quantity y will become a lot smaller
and the series will converge a lot more and this way the root f immediately
becomes known so accurately that the error will be very small. And hence the
advantages of this expression over the one we found before is clearly seen.

§236 Let us assume that the root of the power n of any number N is to be
extracted. Therefore, having taken an approximate power of the exponent n
the propounded number will easily be resolved into this form N = an + b.
Therefore, it will be

xn = an + b and y = xn − an − b,

whence it is

dy = nxn−1dx and
dx
dy

= p =
1

nxn−1

dp = − (n− 1)dx
nxn and

dp
dy

= q = − n− 1
nnx2n−1

dq =
(n− 1)(2n− 1)dx

nnx2n and
dq
dy

= r =
(n− 1)(2n− 1)

n3x3n−1

dr = − (n− 1)(2n− 1)(3n− 1)dx
n3x3n and

dr
dy

= s = − (n− 1)(2n− 1)(3n− 1)
n4x4n−1

etc.

Now, put x = a and it will be y = −b and the root in question f = n
√

an + b
will be expressed this way

f = a+
b

nan−1 −
(n− 1)bb

n · 2na2n−1 +
(n− 1)(2n− 1)b3

n · 2n · 3na3n−1 −
(n− 1)(2n− 1)(3n− 1)b4

n4 · 2n · 3n · 4na4n−1 + etc.

and so the same series results which is usually found by expansion of the
binomial (an + b)

1
n .

§237 Therefore, after the approximate root a was found in the actual extrac-
tion and at the same time the residue b was found then the value b

ann−1 is to
be added to the root, such that a root closer to the true one is obtained. But
because of N = an + b it will be
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an−1 =
N − b

a
.

But this way a root larger than the correct one will be found, since the third
term must be subtracted. Therefore, to find a root a lot closer to the true one
by means of division of the residue b a suitable divisor must be investigated,
which we want to assume to be

nan−1 + αb + βbb + γb3 + etc.

Therefore, because it must be

b
nan−1 + αb + βb2 + γb3 + etc.

=
b

nan−1 −
(n− 1)bb
2n2a2n−1 +

(n− 1)(2n− 1)b3

6n3a3n−1 − (n− 1)(2n− 1)(3n− 1)b4

24n4a4n−1 + etc.,

after the multiplication by nan−1 + αb + βb2 + γb3 + etc. it will be

b = b− (n− 1)bb
2nan +

(n− 1)(2n− 1)b3

6n2a2n − (n− 1)(2n− 1)(3n− 1)b4

24n3a3n + etc.

+
αb2

nan−1 − (n− 1)αb3

2n2a2n−1 +
(n− 1)(2n− 1)αb4

6n3a3n−1

+
βb3

nan−1 − (n− 1)βb4

2n2a2n−1

+
γb4

nan−1

Therefore, the following determinations are deduced

α =
n− 1

2a

β =
(n− 1)α

2nan − (n− 1)(2n− 1)
6nan+1 = − (n− 1)(n + 1)

12nan+1

γ =
(n− 1)β

2nan − (n− 1)(2n− 1)α
6nna2n +

(n− 1)(2n− 1)(3n− 1)
24n2a2n+1 =

(n− 1)(n + 1)
24na2n+1 .

Therefore, the fraction to be added to the root a already found will be

b

nan−1 + (n−1)b
2a − (nn−1)bb

12nan+1 + (nn−1)b3

24na2n+1 − etc.
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§238 Therefore, if the square root of the number N is to be extracted and the
approximate root was already found to be = a together with the residue = b,
to the found root one additionally has to add the quotient, which results, if
the residue b is divided by

2a +
b

2a
− bb

8a3 +
b3

16a5 − etc.

But if the cube root must be extracted, then the residue must be divided by

3a2 +
b
a
− 2bb

9a4 +
b3

9a7 − etc.,

the use of which formulas we will seen in these examples.

EXAMPLE 1

Extract the square root of the number 200.

Put N = 200 and because the closest square is 196, it will be a = 14 and the
residue b = 4, which therefore must be divided by

28 +
1
7
− 1

7 · 196
+

1
7 · 196 · 98

,

and therefore the divisor will be = 28.142135; if 4 is divided by it, one will
obtain a decimal fraction to be added to 14, which will be correct up to 10
figures and more.

EXAMPLE 2

To extract the cube root of the number N = 10.

The closest cube is 8 and the residue is = 2, whence a = 2 and b = 2 and
the divisor = 12 + 1− 1

18 = 12.9444. Therefore, the cube root in question will
approximately be = 2 2

12.9444 = 2 10000
64722 .

§239 The series found for the root can also be considered as a recurring
series resulting from a certain fraction. For, this way many terms of the series
will be reduced to a lot less, namely those which constitute the numerator
and the denominator of the fraction. So, having paid a little attention, one will
see that it will approximately be
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(a + b)n = an ·
a + n+1

2 b
a− n−1

2 b

and even closer

(a + b)n = an ·
aa + n+2

2 ab + (n+1)(n+2)
12 bb

aa− n−2
2 ab + (n−1)(n−2)

12 bb
.

In like manner by introducing several terms even more accurate fractions can
be obtained:

(a + b)n = an ·
a3 + n+3

2 a2b + (n+3)(n+2)
10 ab2 + (n+3)(n+2)(n+1)

120 b3

a3 − n−3
2 a2b + (n−3)(n−2)

10 ab2 − (n−3)(n−2)(n−1)
120 b3

.

An even more general form of this kind be exhibited, to express which
conveniently let

A =
m(n + m)

1 · 2m
A =

m(n−m)

1 · 2m

B =
(m− 1)(n + m− 1)

2(2m− 1)
A B =

(m− 1)(n−m + 1)
2(2m− 1)

A

C =
(m− 2)(n + m− 2)

3(2m− 2)
B C =

(m− 2)(n−m + 2)
3(2m− 2)

B

D =
(m− 3)(n + m− 3)

4(2m− 3)
C D =

(m− 3)(n−m + 3)
4(2m− 3)

C

etc. etc.

But having determined these values it will be

(a + b)n = an · am + Aam−1b +Bam−2b2 + Cam−3b3 + etc.
am −Aam−1b +Bam−2b2 − Cam−3b3 + etc.

§240 Therefore, if a fractional number is substituted for n here, these formu-
las will be very useful to extract the roots. So if any root of power n of the
expression an + b has to be extracted, the following formulas can be used

(an + b)
1
n = a · 2nan + (n + 1)b

2nan + (n− 1)
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(an + b)
1
n = a · 12n2a2n + 6n(2n + 1)anb + (2n + 1)(n + 1)bb

12n2a2n + 6n(2n− 1)anb + (2n− 1)(n− 1)bb
.

But if one puts an + b = N that it is an = N − b, it will be

(an + b)
1
n = a · 2nN − (n− 1)b

2nN − (n + 1)b

(an + b)
1
n a · 12n2N2 − 6n(2n− 1)Nb + (2n− 1)(n− 1)bb

12n2N2 − 6n(2n + 1)Nb + (2n + 1)(n + 1)bb
.

§241 Therefore, the general formula for finding the root of any equation,
which consists of several terms, has the same use as the usual rule of a
binomial has for the resolution of the pure equations xn = c, and therefore our
formula goes over into that rule in this case. But if the equation was affected or
even transcendental, our general expression is always applied with the same
success and yields an infinite series exhibiting the value of the root. Therefore,
since the resolution of such equations is its most important application, let us
demonstrate its use a little more diligently. Therefore, let this affected equation
consisting of three terms be propounded

xn + cx = N

while c and N denote any given quantities. Put xn + cx− N = y; it will be
dy = (nxn−1 + c)dx and hence it will be p = 1

nxn−1+c ; then it is

dp = −n(n− 1)xn−2dx
(nxn−1 + c)2 and q = −n(n− 1)xn−2

(nxn−1 + c)3 .

In like manner because of r = dq
dy , s = dr

dy etc. one will find

r =
n2(n− 1)(2n− 1)x2n−4 − n(n− 1)(n− 2)cxn−3

(nxn−1 + c)5

s =
−n3(n− 1)(2n− 1)(3n− 1)x3n−6 + 4n2(n− 1)(n− 2)(2n− 1)cx2n−5 − n(n− 1)(n− 2)(n− 3)c2xn−4

(nxn−1 + c)7

t =

{
n4(n− 1)(2n− 1)(3n− 1)(4n− 1)x4n−8 − n3(n− 1)(n− 2)(2n− 1)(29n− 11)cx3n−7

+n2(n− 1)(n− 2)(2n− 1)(11n− 29)c2x2n−6 − n(n− 1)(n− 2)(n− 3)(n− 4)c3xn−5

}
(nxn−1 + c)9

etc.
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Having found these values the root of the propounded equation will be

f = x− py +
1
2

qyy− 1
6

ry3 +
1
24

sy4 − 1
120

ty5 + etc.;

for, whatever is substituted for x, whence at the same time the letters y, p, q, r
etc. obtain determined values, the sum of the series will become equal to the
value of one single root.

EXAMPLE 1

Let this equation be propounded x3 + 2x = 2.

It will be c = 2, N = 2 and n = 3 and y = x3 + 2x− 2. Put x = 1; it will be
y = 1 and

p =
1
5

, q = − 6
53 , r =

78
55 , s = −16 · 90

57 etc.

and the root of the equation will be

f = −1
5
− 3

53 −
13
55 −

60
57 − etc. = 0.771072.

Now put x = 0.77, and since it is y = x3 + 2x− 2,

p =
1

3xx + 2
, q = −6p3x, r = 90xxp5 − 12p5

and

s = −2160p7x3 + 720p7x,

by using logarithms one will have

log x1 = 9.8864907 x1 = 0.77

log x2 = 9.7729814 x2 = 0.5929

log x3 = 9.6594721 x3 = 0.456533

2x = 1.54

x3 + 2x = 1.996533

Therefore y = −0.003467
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And furthermore

log(−y) = 7.5399538 3xx + 2 = 3.7787

log p = 9.4226575 log(3xx + 2) = 0.5773424

log(−py) = 6.9626113 −py = 0.000917511

log p3 = 8.2679725

log x = 9.8864907

log 3 = 0.4771213

log y2 = 5.0799076

log
(
− 1

2 qyy
)

= 3.7114921 − 1
2 qyy = 0.000000514

Therefore, the root is f = 0.770916997, which hardly deviates from the true
value, just the last figure is not correct.

EXAMPLE 2

Let the equation x4 − 2xx + 4x = 8 be propounded.

Put y = x4 − 2xx + 4x− 8; it will be dy = 4dx(x3 − x + 1),

p =
1

4(x3 − x + 1)
,

dp
dx

=
−3xx + 1

4(x3 − x + 1)2 .

Therefore,

q =
−3xx + 1

16(x3 − x + 1)3 ,
dq
dx

=
21x4 − 12xx− 6x + 3

16(x3 − x + 1)4 and r =
21x4 − 12xx− 6x + 3

64(x3 − x + 1)5 etc.,

from which the root of the propounded equation will be

f = x− y
4(x3 − x + 1)

− (3xx− 1)yy
32(x3 − x + 1)3 −

(7x4 − 4xx− 2x + 1)y3

128(x3 − x + 1)5 − etc.

Therefore, it is necessary to attribute an appropriate value to x, so that series
becomes convergent. But at first it is perspicuous, if a value rendering x3 −
x + 1 = 0 would be attributed to x, that then all terms of there series except
for the first would become infinite and nothing can be concluded from this.
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Therefore, it is convenient to assign such a value to x that both y becomes
small and x3 − x + 1 not very large. Let x = 1; it will be y = −5 and

f = 1 +
5
4
− 25

16
+

125
64
− etc.;

because the three terms 5
4 −

25
16 +

125
64 agree with the terms of the geometric

progression, whose sum is 5
9 , it will approximately be f = 14

9 . Therefore, let
us put x = 3

2 ; it will be

y = −23
16

and x3 − x + 1 =
23
8

,

whence it is

f =
3
2
+

1
8
− 1

64
+

391
256 · 529

− etc. = 1.61.

Now put x = 1.61; it will be

log x = 0.2068259 x = 1.61 let x3 − x + 1 = z

log x2 = 0.4136518 x2 = 2.5921

log x3 = 0.6204777 x3 = 4.173281

log x4 = 0.8273036 x4 = 6.718983

hence

log(−y) = 8.4016934 y = − 0.025217

log z = 0.5518502 z = 3.563281

log −y
z = 7.8498432

log 4 = 0.6020600

log −y
4z = 7.2477832 −y

4z = 0.0017692

log(3xx− 1) = 0.8309926 3xx− 1 = 6.7763

log y2 = 6.8033868

7.6343794

log z3 = 1.6555506

5.9788288

log 32 = 1.5051500
(3xx− 1)2y2

32z3 = 0.00002976

= 4.4736788
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Therefore f = 1.6117662.

§242 This method to find the roots of equations approximately extends to
transcendental quantities in like manner. Let us find the number x, whose
logarithm has a given ratio of 1 to n to the number x itself, and one will have
this equation x− n log x = 0; but let k be the modulus of these logarithms,
such that these logarithms are obtained, if the hyperbolic logarithms are
multiplied by k; it will be d. ln x = kdx

x . Therefore, put x− n log x = y and let
f be the value of f in question which renders x = n log x. Therefore, because
it is y = x− n log x, it will be

dy = dx− kndx
x

=
dx(x− kn)

x
and

dx
dy

= p =
x

x− kn
, whence dp = − kndx

(x− kn)2 ,

therefore

dp
dy

= q =
−knx

(x− kn)3 , dq =
2knxdx + k2n2dx

(x− kn)4

dq
dy

= r =
knx(2x + kn)
(x− kn)5 .

Therefore, it will be

f = x− xy
x− kn

− knxyy
2(x− kn3)

− knxy3(2x + kn)
6(x− kn)5 − etc.

Below [§ 272] we will show that this problem only admits a solution, if kn > e
while e is the number whose hyperbolic logarithm is = 1, or it must be
kn > 2.7182818.

EXAMPLE

A number except for 10 is to be found, whose tabulated logarithm becomes equal to
the tenth part of the number itself.
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Since the question is about tabulated logarithms, it will be k = 0.43429448190325
and because of n = 10 one will have kn = 4.3429448190325. Now, having put
x = 1 it will be y = 1 and it will be

f = 1 +
1

3.3429
+

2.1714724
(3.3429)3 − etc.

and so it will approximately be f = 1.37. Therefore, set x = 1.37; it will be
log x = 0.136720567156406 and because of y = x− 10 log x it will be

y = 0.00279432843594 and − x + kn = 2.9729448190325.

Therefore, let

log x = 0.1367205

log y = 7.4462773

7.5829978

log(kn− x) = 0.4731866

7.1098112
−xy

x− kn
= 0.00128769

Further, because the third term is − knxyy
2(x−kn)2 = kny

2(x−kn)2 · −xy
x−kn , it will be

log
−xy

x− kn
= 7.1098112

log y = 7.4462773

log kn = 0.6377842

5.1938727

log(kn− x)2 = 0.9463732

4.2474995

log 2 = 0.3010300

log third term = 3.9464695

I. term x = 1.37

II. term = 0.00128769

III. term = 0.00000088

f = 1.37128857

log f = 0.137128857

18



§243 If the equation was an exponential equation, it can be reduced to any
logarithmic one; so, if the value of x is in question, that it is xx = a, it will be
x ln x = ln a. Therefore, having put y = x ln x− ln a it will be

dy = dx ln x + dx and
dx
dy

= p =
1

1 + ln x
and then

dp =
−dx

x(1 + ln x)2 and
dp
dy

= q =
−1

x(1 + ln x)3 ,

dq =
dx

xx(1 + ln x)3 +
3dx

xx(1 + ln x)4 and hence
dq
dy

= r =
1

xx(1 + ln x)4 +
3

xx(1 + ln x)5 ;

further, it will be

dr =
−2dx

x3(1 + ln x)4 −
10dx

x3(1 + ln x)5 −
15dx

x3(1 + ln x)6 ,

therefore

s =
−2

x3(1 + ln x)5 −
10

x3(1 + ln x)6 −
15

x3(1 + ln x)7

and

t =
6

x4(1 + ln x)6 +
40

x4(1 + ln x)7 +
105

x4(1 + ln x)8 +
105

x4(1 + ln x)9 ,

u =
−24

x5(1 + ln x)7 −
196

x5(1 + ln x)6 −
700

x5(1 + ln x)9 −
1260

x5(1 + ln x)10 −
945

x5(1 + ln x)11 .

Therefore, if the true value of x is = f , such that f f = a, it will be

f = x− y
1 + ln x

− yy
2x(1 + ln x)3 −

y3

2xx(1 + ln x)5 −
5y4

8x3(1 + ln x)7 −
7y5

8x4(1 + ln x)9

− y3

6x2(1 + ln x)4 −
5y4

12x3(1 + ln x)6 −
7y5

8x4(1 + ln x)8

− y4

12x3(1 + ln x)5 −
y5

3x4(1 + ln x)7

− y5

20x4(1 + ln x)6

etc.
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Therefore, this expression having continued it to infinity, whatever value is
substituted for x, and having taken y = x ln x− ln a will give the true value of
f . So, if one puts x = 1, it will be y = − ln a and

f = 1 + ln a− (ln a)2

2
+

2(ln a)3

3
− 9(ln a)4

8
+

32(ln a)5

15
− 625(ln a)6

144
− etc.,

where it is to be noted that ln a is the hyperbolic logarithm of a.

EXAMPLE

Find the number f that it is f f = 100.

Because it is

a = 100 and y = x ln x− ln a = x ln x− ln 100,

since it is clear that it is f > 3 and < 4, put x = 7
2 and it will be

log x = 1.25276296849

x log x = 4.38467038972

log 100 = 4.60517018599

y = −0.22049979627

1 + log x = 2.25276296849.

Therefore, by using ordinary logarithms it will be

log(−y) = 9.3434083

log(1 + log x) = 0.3527156
−y

1 + log x
= 0.0978797

8.9906927

log y2 = 8.6868166

3 log(1 + log x) = 1.0581468

7.6286698

log 2x = log 7 = 0.8450980
y2

2x(1 + log x)3 = 0.0006075.

6.7835718
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Therefore, it will approximately be f = 3.5972722;

but having additionally taken the following terms, it will be f = 3.5972852.

§244 But moreover differential calculus has an extraordinary use in the
resolution of equations, if a certain relation among the roots was known.
Let the equation y = 0 be propounded, in which y is an arbitrary function
of x. If now, for the sake of an example, it is known that the roots of this
equation differ by the given quantity a, these two roots will easily be found
the following way. Let x denote the smaller of these two roots; the larger will
be = x + a; therefore, because the function y vanishes, if x denotes any of the
roots of the equation y = 0, it will also vanish, if one puts x + a instead of x.
Therefore, it will be

0 = y +
ady
dx

+
a2ddy
2dx2 +

a3d3y
6dx3 + etc.

Therefore, because it is y = 0, it will also be

0 =
ady
dx

+
a2ddy
2dx2 +

a3d3y
6dx3 + etc.

which two equations taken at the same time, using the method of elimination,
will give the value of the root x, which is smaller than the other root by the
quantity a.

EXAMPLE

Let this equation x5 − 24x4 + 49xx− 36 = 0 be propounded, which is known from
anywhere to have two roots differing 1.

Having put y = x5 − 24x3 + 49xx− 36 it will be
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dy
dx

= 5x4 − 72x2 + 98x

ddy
2dx2 = 10x3 − 72x + 49

d3y
6dx3 = 10x2 − 24

d4y
24dx4 = 5x

d5y
120dx5 = 1.

But because of a = 1 it will be

A · · · 5x4 + 10x3 − 62x2 + 31x + 26 = 0.

But it is

B · · · x5 − 24x3 + 49xx− 36 = 0.

Multiply the upper equation by x and the lower equation by 5 and subtract
the one from the other and it will remain

10x4 + 58x3 − 214x2 + 26x + 180 = 0

or
C · · · 5x4 + 229x3 − 107x2 + 13x + 90 = 0,

having subtracted the first A from which it will be

D · · · 19x3 − 45x2 − 18x + 64 = 0.

D · 5x · · · 95x4 − 225x3 − 90x2 + 320x = 0.

A · 19 · · · 95x4 + 190x3 − 1178x2 + 589x + 494 = 0.

E · · · 415x3 − 1088x2 + 269x + 494 = 0.

D · 415 · · · 7885x3 − 18675x2 − 7470x + 26560 = 0.

E · 19 · · · 7885x3 − 20672x2 + 5111x + 8386 = 0.

F · · · 1997x2 − 12581x + 17174 = 0.
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And

D · 247 · · · 4693x3 − 11115x2 − 4446x + 15808 = 0

D · 32 · · · 13280x3 − 34816x2 + 8608x + 15808 = 0

8587x3 − 23701x2 + 13054x = 0

G · · · 8587x2 − 23701x + 13054 = 0

F · 8587 · · · 17148239x2 − 108033047x + 147473138 = 0

G · 1997 · · · 17148239x2 − 47330897x + 26068838 = 0

60702150x − 121404300 = 0.

From this equation it follows that x = 2 and therefore also x = 3 will be a
root of the equation, both of which values indeed satisfy the equation.

§245 But this operation can be done without use of differential calculus,
because the same equation the differential calculus yielded, results, if in the
propounded equation one puts x + 1 instead of x. Furthermore, this method
of elimination is too laborious, and if the equations would be of higher degree,
the labor would be simply too much to handle; and this holds even more for
transcendental equations. But if we put that two roots of the propounded
equation y = 0 are equal to each other, then because of x = a the differential
equation goes over into this one dy

dx = 0. Therefore, if any equation y = 0 had
two equal roots, it will be dy

dx = 0 and these two roots taken together will yield
the value of x, to which these two roots are equal. Therefore, vice versa, if the
two equations y = 0 and dy

dx = 0 have a common root, it will be a double root
of the equation y = 0. But this happens, if, after the quantity x was completely
eliminated by means of these two equations y = 0 and dy

dx = 0, one gets to an
identical equation. So if the equation

x3 − 2xx− 4x + 8 (1)

was propounded, it will also be 3xx− 4x− 4 = 0, whose double added to the
first gives

x3 + 4xx− 12x = 0 or xx + 4x− 12 = 0,

whose triple is
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3xx + 12x − 36 = 0

subtract 3xx − 4x − 4 = 0

16x − 32 = 0

x − 2 = 0

Therefore, because x = 2 results, substitute this value in one of the preceding
3xx− 4− 4 = 0 and the identical equation 12− 8− 4 = 0 will result, whence
one concludes that the propounded equation x3 − 2xx − 4x + 8 = 0 has to
equal roots, namely x = 2.

§246 Therefore, if one has an algebraic equation of no matter how many
dimensions

xn + Axn−1 + Bxn−2 + Cxn−3 + Dxn−4 + etc. = 0,

which has two equal roots, it will also be

nxn−1 +(n− 1)Axn−2 +(n− 2)Bxn−2 +(n− 3)Cxn−4 +(n− 4)Dxn−5 + etc. = 0.

This double root of that equation will at the same time be a root of this last
equation, of course. Multiply the first equation by n and subtract the second
multiplied by x from it and this new equation will result

Axn−1 + 2Bxn−2 + 3Cxn−3 + 4Dxn−4 + etc. = 0.

Now add the first multiplied by a and the latter multiplied by b; it will be

axn + (a + b)Axn−1 + (a + 2b)Bxn−2 + (a + 3b)Cxn−3 + etc. = 0,

which equation combined with the propounded itself will show equal roots,
if the propounded one has some. Therefore, because the quantities a and
b can be taken arbitrarily, the coefficients a, a + b, a + 2b etc. represent any
arithmetic progression. Therefore, if any equation has two equal roots, they
will be found, if the single terms of the propounded equation are multiplied by
terms of a certain arithmetic progression, respectively; for, the new equation
resulting this way will also contain the root, which is contained twice in the
propounded one. So, if the the terms of the equation
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xn + Axn−1 + Bxn−2 + Cxn−3 + Dxn−4 + etc.

are multiplied by this arithmetic progression

a, a + b, a + 2b, a + 3b, a + 4b etc.;

this new equation will result

axn +(a+ b)Axn−1 +(a+ 2b)Bxn−2 +(a+ 3b)xn−2 +(a+ 3b)Cxn−3 + etc. = 0,

which combined with the latter will show the equal roots. And this is the
well-known rule to find equal roots of any equation.

§247 If the equation y = 0 has three equal roots, it will not only be dy
dx = 0,

but it will also be ddy
dx2 = 0, if one substitutes the value of the root for x, which

is contained in the equation y = 0 trice. To show this let us put that the
equation y = 0 has three roots x, x + a, x + b etc., of which the first differs
from the other ones by a and b, respectively; and since y vanishes, if one writes
x + a or x + b instead of x, it will be

y = 0

y+
ady
dx

+
a2ddy
2dx2 +

a3d3y
6dx3 +

a4d4y
24dx4+etc. = 0

y+
bdy
dx

+
b2ddy
2dx2 +

b3d3y
6dx3 +

b4d4y
24dx4+etc.= 0;

if the first is subtracted from the two last ones, it will be

dy
dx

+
addy
2dx2 +

a2d3y
6dx3 +

a3d4y
24dx4+etc.= 0

dy
dx

+
bddy
2dx2 +

b2d3y
6dx3 +

b3d4y
24dx4+etc.= 0

Also subtract these from each other and having divided by a− b it will be

ddy
2dx2 +

(a + b)d3y
6dx3 +

(aa + ab + bb)d4y
24dx4 + etc. = 0.
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Now put a = 0 and b = 0 such that these three roots are equal to each other,
and because of the vanishing terms it will be

y = 0,
dy
dx

= 0 and
ddy
dx2 = 0.

§248 Therefore, if the equation y = 0 has three equal roots, say f , f , f , then
this quantity f will also be a root not only of this equation dy

dx = 0, but also
of this one ddy

dx2 = 0. Therefore, recalling the results we demonstrated before
on two equal roots of equations, it is obvious, because f is the common root
of the equation dy

dx = 0 and its differential ddy
dx2 = 0, that it has to be contained

twice in the equation dy
dx = 0. Therefore, if the equation

xn + Axn−1 + Bxn−2 + Cxn−3 + Dxn−4 + etc. = 0

contains three equal roots f , f , f , if its terms are multiplied by the terms of a
certain arithmetic progression, then the resulting equation will have two equal
roots f and f ; therefore, it can be multiplied by an arithmetic progression
again so that an equation containing the root f once results. Therefore, one will
obtain three equations having the common root f , from whose combination
this root will easily be found. For, if arithmetic progressions of such a kind
are chosen, whose either first or last terms are = 0, then an equation of one
degree lower will result and so the elimination will be even easier.

§249 In like manner it will be shown, if the equation y = 0 has four equal
roots f , f , f , f , that than for x = f it will not only be y = 0, dy

dx = 0 and ddy
dx2 = 0,

but it will also be d3y
dx3 = 0. As the equation y = 0 contains the root x = f four

times, so the equation dy
dx will contain the same trice, the equation ddy

dx2 = 0

twice and the equation d3y
dx3 = 0 once. This will also be seen more easily, if we

consider that the function y has to have a form of this kind (x− f )4X in this
case, where X denotes any function of x. Having assumed this form it will be

dy
dx

= (x− f )3
(

4X +
(x− f )dX

dx

)
and hence be divisible by (x− f )3. Further, ddy

dx2 will have the factor (x− f )2

and d3y
dx3 the factor x− f ; from this it is perspicuous, if the root f is contained
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in the equation y = 0, it has to be contained in the equation dy
dx = 0 trice, in

the equation ddy
dx2 = 0 twice and in d3y

dx3 = 0 still once.
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